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It is shown that the Rayleigh-Taylor instability of an accelerating incompressible, 
inviscid fluid layer is the result of pressure gradients, not gravitational acceleration. 
As in the classical Rayleigh-Taylor instability of a semi-infinite layer, finite fluid 
layers form long thin spikes whose structure is essentially independent of the initial 
thickness of the layer. A pressure maximum develops above the spike that effectively 
uncouples the flow in the spike from the rest of the fluid. Interspersed between the 
spikes are rising bubbles. The bubble motion is seriously affected by the thickness 
of the layer. For thin layers, the bubbles accelerate upwards exponentially in time 
and the layer thins so rapidly that it may disrupt at finite times. 

1. Introduction 
Several studies (Fraley et al. 1974; Mason 1975) have indicated that thin-shell 

fusion targets have potential advantages in reducing the peak laser driving power 
for given performance of an inertial confinement device. Unfortunately, performance 
is limited by hydrodynamic instability. Two-dimensional numerical simulations 
(Verdon et al. 1982) of ablatively accelerated thin-shell fusion targets show that the 
essential dynamics of strongly driven flows are governed by the classical Rayleigh- 
Taylor instability of an ideal, incompressible, thin fluid layer. 

Actually, the Rayleigh-Taylor instability appears in many natural phenomena 
and technical applications (Sharp 1984). In its simplest form, the onset of the 
instability occurs when a lighter fluid pushes a heavier fluid. The general features are 
for interfacial protuberances to grow and interact in complicated ways. Although 
several factors, such as compressibility and viscosity, may modify the behaviour, it 
is the density ratio that plays the most important role, but even for the simplest case 
of inviscid, incompressible fluids, a full treatment of the late stages of the interfacial 
motion is still beyond numerical studies. Consequently, the focus of most studies has 
been on the initial stages of the instability under ideal circumstances. For example, 
the classical Rayleigh-Taylor instability of a semi-infinite layer of ideal, incom- 
pressible fluid has been studied extensively (Daly 1967; Baker, Meiron & Orszag 
1980 ; Menikoff & Zemach 1983). In particular, the two-dimensional evolution of an 
initial sinusoidal perturbation to the fluid surface shows the formation of long thin 
spikes nearly in free fall under the action of gravity, interspersed with rising bubbles 
that penetrate the fluid with nearly constant speed. Initially the spike growth is 
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exponential but it soon tapers off to the quadratic growth in time characteristic of 
free fall. At  an intermediate time, a pressure maximum forms above the spike which 
causes the spike to accelerate momentarily faster than gravity and which 
subsequently serves as a barrier between the motion of the fluid in the spike, and 
the rest of the fluid. 

In  this paper, we present results for the two-dimensional evolution of a finite layer 
of ideal, incompressible fluid undergoing Rayleigh-Taylor instability due to either 
gravity or an externally applied pressure field that accelerates the layer. The rise of 
the bubble is strongly affected by the thickness of the layer. The development of the 
pressure maximum above the spike has important consequences for the dynamics of 
the motion, leading in some cases to the formation of a small jet of fluid shooting 
out in a direction opposite to the spike. The present paper corrects some technical 
deficiencies present in earlier calculations of fluid layer instability and resolves some 
paradoxical behaviour of these layers (Verdon et al. 1982). 

2. Formulation of problem 
A horizontal layer of ideal, incompressible fluid of density p and uniform thickness 

H is initially at  rest. This state is unstable in that a small initial perturbation of the 
layer results in large subsequent deformations. The resulting flow is assumed 
two-dimensional and 2x-periodic in the horizontal direction, s. In figure 1, a 
schematic of the flow geometry is given. The lower and upper surfaces are parame- 
trized by (sl(a), yl(a)) and (x2(a) ,  y 2 ( a ) )  respectively where 
(s(a +2x), y ( a +  2 ~ ) )  = (%(a) + 2 ~ ,  y(a)). An external pressure difference is applied 
across the layer with the pressure below and above the layer denoted by Pl and pZ 
respectively. The gravitational acceleration g is assumed to be in the y-direction. If 
Pl = pZ, that is no applied pressure difference, the layer falls freely under gravity. 
Alternatively, if gravity g = 0 but & > pZ then the layer accelerates upwards with 
acceleration (4 - P2)/pH. When the pressure difference Pl - pZ = pgH, the layer is in 
static balance. 

In  particular, consider a perturbed layer of the form 

(%(a, t ) ,  0 )  = (a, *ata + E l ( t )  COS @a)) ,  (2.1) 

(z&, t ) ,  Y&, t ) )  = (a, H+@t2+s , ( t )  cos (ka))) ,  (2.2) 

where a = (8-pZ)/PH-f7 (2.3) 

is the mean acceleration of the layer. The fluid is assumed to be initially at rest with 
the lower surface perturbed initially by so cos (ka)  and the top surface unperturbed. 
Here ~ ~ ( 0 )  = e0, ~ ~ ( 0 )  = 0. Linearized perturbation analysis gives the result 

3 = (1 + coth ( k H ) )  cosh (at) + (1 - coth ( k H ) )  cos (at), (2.4) 

(2.5) 

€0 

2e2 - (cash (at) -COS (at)) -- 
€0 sinh ( k H )  ’ 

where the growth rate a satisfies 

This linear result requires some discussion. If PI = P2, the perturbation does not 
grow. The layer falls uniformly under the action of gravity, g. However, if the fluid 
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FIGURE 1. A schematic of the fluid layer. 

is not initially at rest, then deformation is possible as the fluid falls (Menikoff & 
Zemach 1983). If PI 8 P2, the flow is unstable for all 9.  We conclude that Rayleigh- 
Taylor instability is most properly viewed as a consequence of pressure gradients and 
not of gravitational acceleration. This view of Rayleigh-Taylor instability is valid 
for both finite and infinite fluid layers. In  the next section, we present results that 
extend this interpretation of Rayleigh-Taylor instability to show that the nonlinear 
evolution of an initial, sinusoidal perturbation is independent of g except for an 
overall translation of the layer. 

At t = 0, the layer is at rest so there is no initial vorticity. For ideal, incompressible 
flow the vorticity remains zero for all time within the layer. The fluid velocity may 
then be expressed as the gradient of a potential g5 which satisfies Laplace's equation. 
It is convenient to introduce the complex field point z = z+iy and the complex 
potential Q, = $ + i$ where $ is the streamfunction. The complex velocity q = u+ iw 
where u, w are the horizontal, vertical components respectively. 

dQ, 
q + = d z '  

where the star superscript denotes complex conjugate. 

Their derivation is outlined in the Appendix. 
The equations governing the evolution of the surface locations are given below. 

where the subscript a refers to differentiation with respect to a and the subscript 
j = 1,2 refers to values at the lower, upper surface, respectively. The weighting 
parameter w, determines the tangential motion of the surface marker z,(a) ; the choice 
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w1 = - 1,  w2 = 1 ensures that the markers move with the fluid. The complex potential 
at the surface generated by dipole distributions along the surfaces is given by 

@,(a) = J pk(a’) Kjk(a, a’) da’, 
k-1 0 

(2.10) where 

and it has been assumed that the layer is 2n-periodic. The principal value of the 
integral in (2.9) must be taken when necessary. 

The rate of change of the dipole sheet strengths (au,/at)(a) satisfy coupled 
Fredholm integral equations of the second kind ; 

1 
4ni K,,(a, a’) = -Zka(a’) cot {+ (z j (a )  - z k ( a o ) } ,  

where A ,  = -2, A ,  = 2 and 

6, = - Aj pk(a’) Re {&(a, a’)} da’ 
k-1 

k-1 J O  

where T~ satisfies the adjoint, coupled Fredholm integral equations of the second kind : 

(2.15) 

1 
where q&, a’) = Z z j a ( a )  c0t{+(z,(a)-zz,(a’)). (2.16) 

Equation (2.16) corrects a typographical error in equation (4.9) of Baker (1983). 
The translational velocity V(t) provides the necessary vertical flux so that the 
centroid of the fluid layer moves according to Newton’s laws as the layer distorts. 
Indeed the motion of the centroid provides a diagnostic on the numerical calculations. 
Since the layer is assumed periodic, it is only the y-location jj of the centroid that 
is meaningful : 

4 n m  = j; {YW Z 2 M  - Y W  Zla(a)} da, (2.17) 

r2X 
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is the mean thickness of the layer which remains constant in time. The vertical 
velocity of the centroid is given by 

while its acceleration must satisfy 

(2.20) 

Equations (2.17), (2.19), (2.20) are used as the diagnostics. 
Equations (2.8), (2.11) and (2.14) constitute a set of evolution equations for the 

surfaces of the layer. They may be solved numerically a,s follows. Markers along the 
surfaces are evenly spaced in the Lagrangian variable, a. Since a is defined only by 
the requirement that it labels a marker that moves with the field, there is great 
flexibility in prescribing the initial location of the markers. We have found it 

(2.21) zl, = a, + iEo COB (a,), convenient to use 

(2.22) zz, = a, + iH, 

- 

- 

where - jZx asint$) (j = 0 ,1 ,  ..., N), 
a, = 7- (2.23) 

which describes a layer of thickness H whose lower surface has been disturbed 
sinusoidally. The parameter a, 0 < a < 1, determines the initial clustering of markers 
in the bubble region. As t increases, the markers fall into the spike. The advantage 
of this labelling is that the bubble region is better represented at later times than 
it would be with initially uniform marker spacing. For the results reported here, 
a = 0.5. An alternative procedure (Pullin 1982) would be to make the weighting 
parameters w1 and wa (see (2.8)) functions of the Lagrangian variable a so that points 
do not move significantly away from the bubble region, but those near the spike still 
fall into it. Some test runs using this approach showed no appreciable difference from 
the case where w1 and we are kept fixed, consistent with our observations *hat the 
resolution of the spike region is the dominant factor in the efficient execution of the 
numerical method. 

The integrals are evaluated using an alternate point, trapezoidal rule after they 
have been regularized in a standard way (Menikoff & Zemach 1983; Baker 1983; 
Baker & Shelley 1986). For example, consider the integral, 

(2.24) 

which is one of the integrals in (2.9) with the subscripts dropped. Since @(a) = 0 when 
p(a) is a constant, the singularity in (2.24) may be easily removed and the integrand 
has a finite value as a'+a, but the limit involves the derivative of p. However, the 
trapezoidal rule applied at alternate points avoids the need to evaluate the integrand 
at a' = a. Specifically, 

1 
@(a) = f p@') z,(a') cot {i(z(a) -z(a/))l da', 

I N  
@(jAe) = E (,u(kAe) -p(jAe)) z,(kAe) cot {+(z(jAe) - z(kAe))}, 

2N1 k-1 
j+k-odd 

where Ae = 27t/N. For the non-singular integrals in (2.9), the standard trapezoidal 
rule is applied without any modification to the integrand. The integrals in (2.12) and 
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(2.15) may be treated similarly. However, difficulties in evaluating non-singular 
integrals accurately occur when any part of the layer is only a few times thicker than 
the local spacing of markers (Maskew 1977); while the interface may be well resolved, 
there will be too few collocation points to resolve the rapid variation in the integrand 
due to the nearby presence of the pole singularity. Specifically, this situation occurs 
when the local spacing between surface points near the field point is greater than 
one-sixth of the shortest distance to the other surface. Accuracy in the evaluation 
of these integrals may be restored by cubic spline interpolation of N new quadrature 
points along the interface (Baker & Shelley 1986). These new points are clustered 
along the interface in the vicinity of the most rapid variation in the integrand, so 
that the local spacing of points is at most one-sixth of the shortest distance to the 
other interface. Note that these quadrature points do not replace the surface- 
representation points but are merely introduced to evaluate the integrals accurately. 
Clearly, any number of quadrature points could be used that lead to accurate 
evaluations of the integrals, but the choice of using the same number as there are 
surface-representation points proves adequate for our purposes and helps keep the 
computational cost moderate. 

The value of ap,/at is computed by collocation and may be found iteratively from 
the discrete form (2.11) since the Fredholm integral equations have a globally 
convergent Neumann series. A solution is considered converged whenever the 
absolute value of the difference between two iterates of ap/at is less than low7 at each 
collocation point. Improved first guesses for the solution are obtained from a 
fourth-order extrapolation of data from previous time levels. Unfortunately, the 
eigenvalues of the iteration procedure approach 1 as the layer thins, requiring many 
more iterations for convergence and at the same time the more costly procedure of 
interpolating new quadrature points must be used. 

All derivatives are evaluated from cubic-spline approximations with fourth-order 
accuracy. Second-order derivatives may be calculated also with fourth-order ac- 
curacy by fitting a cubic spline to the first-order derivatives (Shelley & Baker 1986). 
Time integration is performed using the standard fourth-order Adams-Moulton 
predictor-corrector ; starting values are obtained with the fourth-order Runge-Kutta 
method. Consequently, the method has an overall accuracy which is fourth-order in 
both time and space. Several tests were performed to check the computer code. In 
particular, a third-order perturbation expansion was used as an exact solution for 
small time and the numerical results showed clearly the fourth-order accuracy of the 
method. 

The numerical stability of the method is much more difficult to assess. Our 
calculations show no evidence of numerical instability, neither in the results reported 
here nor in previous work (Baker etal. 1980, 1982). Others who have also used 
boundary integral techniques to study Rayleigh-Taylor instability, report insta- 
bilities in the bubble region. Linear analysis suggests that the flow in the bubble 
region is unstable, but a more thorough analysis (Dagan 1975) shows that the growth 
rates are reduced by the stretching of the interface. Thus, the stability of the 
bubble remains an open question, not easily resolved by numerical studies. 

3. Results 
Several special cases have been used to verify the reliability of the computer code. 

With p ,  = p, = 0 but g = 1, the fluid layer falls without deformation and the centroid 
moves according to 3 = ijo-0.5t2 where Yo is the initial position of the centroid. With 
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N = 33 markers and a time step At = 0.005, the numerical code was used to follow 
a layer of thickness H = 0.25 and initial perturbation amplitude e0 = 0.1 until t = 1 
with only roundoff errors being observed. This result is expected since the variation 
in time is quadratic so it should be treated accurately to within roundoff error by 
the fourth-order Adams-Moulton predictor-corrector scheme. 

Next a comparison was made between a layer accelerated by a pressure difference 
PI = H = 0.25, P, = 0 without gravity ( g  = 0) and with gravity ( g  = 1). When g = 0, 
the centroid accelerates vertically at rate 1, while, if g = 1, the centroid remains fixed. 
Theoretically the location of the surfaces relative to the centroid is the same in both 
cases. With N = 33 and At = 0.005, the agreement in numerical results for the two 
cases was good to 

For our main results, we used PI = H, Pz = 0 and g = 1 so that the centroid 
remained stationary. Clearly the results can depend on only two non-dimensional 
parameters kH and eo/N where k is the wavenumber and eo is the amplitude of the 
initial perturbation on the lower surface. In  all cases reported here, the initial 
perturbation had only one Fourier mode and so we chose k = 1. Unless otherwise 
stated, N = 64 points were used to represent each surface over a full wavelength and 
the timestep was 0.005 for the results reported here. Of course, computer runs with 
less points and larger timesteps were also done to check accuracy. Another check on 
accuracy is provided by the computation of djj/dt ( = 0 for the cases considered here) 
by (2.19). In  general, the error in dg/dt is larger than the error in the location of the 
interface. The largest errors occur at the end of the calculations; there is a dramatic 
rise in the error in djj/dt from lovs and better to about lo-' when the code stopped. 
Thus we are confident in the accuracy of the results. 

First the dependency on H is studied, so eo = 0.5 was kept fixed and several 
calculations with various H were done. In  figure 2, the location of the surfaces of the 
layer are shown at three times for H = 10. Only a half wavelength is shown, and the 
surface points are marked by a small x. In  addition to the layer boundaries, contours 
of constant pressure are shown as dashed curves. These contours show that the main 
pressure gradient remains largely unaffected above the bubble, but that a pressure 
maximum develops above the spike. Figure 3 shows the pressure along the centreline 
of the spike and the development of the pressure maximum is clearly observable. 
While the behaviour of the lower surface appears identical to that of a semi-infinite 
fluid undergoing the classical Rayleigh-Taylor instability (Daly 1967), there are some 
differences. In  particular, the rise of the bubble is affected by the finite thickness of 
the layer. In figure 4, the velocity V, of the bubble as defined by the vertical velocity 
at the bubble centre on the lower surface is shown as a function of time for various 
layer thickness. The bubble always rises faster than bubbles generated by the classical 
Rayleigh-Taylor instability of a semi-infinite fluid layer, although the comparison 
is complicated by the question of the frame of reference. For finite layers, measure- 
ments are made relative to the centroid of a periodic strip, but in the semi-infinite 
fluid the centroid loses its meaning and measurements are done in a frame where there 
is no motion at 00. That is, in the semi-infinite case, the frame is defined so there 
is no mean flux across the surface. For the finite-layer calculations, there is a mean 
flux across the bounding surfaces. A suitable vertical velocity may be subtracted from 
the bubble velocity of the layer so that there is no mean flux across the top and bottom 
surfaces (but the centroid now moves) ; the results in this modified reference frame 
are drawn as dashed lines in figure 3. There is now closer agreement with the classical 
Rayleigh-Taylor result for the large-time Froude number V,/(gA)+ x 0.225 (A = 27c 
in our calculations) although the difference is still 0(1/H). At very large times, the 

in the time interval (0,1.5). 
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contours 
t = 0 ;  (b)  

Spike centreline 

FI~UBE 3. Preessure profiles at t = 0 and t = 4 along the centreline of the spike (5 = x )  for the 
same run aa in figure. 2. 
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0 1 2 3 4 
Time 

FIGURE 4. Bubble velocity determined at x = 0 on the lower surface aa a function of time for various 
H (solid curves); the same in a frame with no vertical flux (dashed lines). 

bottom surface of a finite layer gets close to its top surface and the bubble begins 
to accelerate upwards; for thick layers, this occurs at a time O(H) .  For thicknesses 
less than about half a wavelength, the bubble motion is completely different from 
that of the classical Rayleigh-Taylor instability ; the bubble continually accelerates 
upwards at an exponentially increasing rate. 

In  figure 5,  the location of the layer boundaries are shown at various times for 
H = 2.0. The bubble becomes a thin layer of fluid draining into a well-formed spike. 
Notice the formation of an anti-spike on the top surface. The anti-spike is a jet of 
fluid that falls back on itself due to the presence of gravity. Alternatively one may 
consider the anti-spike as a hydraulic jump that results from fluid draining out of 
the bubble and falling rapidly into the trough formed by the spike. The fine-scale 
structure of the anti-spike is too difficult to resolve without exorbitant computing 
costs, so our results are terminated a t  the intermediate stages of the anti-spike 
formation. The pressure contours show the formation of a very large pressure 
maximum above the spike, consistent with the behaviour of the fluid. The pressure 
profile along the centreline of the spike is shown in figure 6. 

Assuming that the motion of a layer of incompressible, inviscid fluid is well posed 
for all time, it is likely that the pattern of behaviour plotted in figure 5 occurs for 
all layer thickness H .  For large H ,  we expect that the time at which the top surface 
begins to deform into an anti-spike is substantial. Therefore, it is most efficient to 
infer results for general H from those for thin layers in which efficient computations 
can be done. 

In  figure 7, the bubble rise velocity in time is shown for various H but with 
eo/H = 0.2 kept fixed. The trend is similar in all cases showing that the bubble 
depends on eo/H and only weakly on kH. However the acceleration of the tip of the 
spike depends on eo k and only weakly on kH. The behaviour of the spike is similar 
to its behaviour in the classical Rayleigh-Taylor instability (see figure 8) .  

It seems that as the bubble accelerates upwards, the layer thins rapidly and may 
eventually disrupt. In  figure 9, we plot the bubble thickness as a function of time. 
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FIQURE 5. A periodic window showing the surfaces of the 5uid layer (solid curves) and contours 
of constant pressure (dashed lines) for various times; the layer has thickness H = 2.0. (a) t = 0; 
(b)  t = 2; (c )  t = 3. 
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1 I 
-4 0 4 

Spike centreline 

FIGURE 6. Pre~ure profiles at t = 0 and t = 3 along the oentmline of the spike (z = x )  for the 
same run as in figure 5. 

0 1 2 3 4 
Time 

FIGURE 7. Bubble velocity determined at z = 0 on lower surface aa a function of time for 
various H. 

For H = 1 .O and 2.0 the thinning appears exponential at large times. Since the bubble 
is rising nearly exponentially for these very thin layers, this implies that the amount 
of fluid in the bubble region is remaining almost constant. There is an apparent 
uncoupling of the motion of the spike and bubble at late times through the formation 
of a pressure maximum just below the top surface above the spike. This pressure 
maximum prevents fluid from draining out of the bubble, allows the fluid in the spike 
to fall with gravity, and causes the anti-spike to form. 
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0.5 

0 1 2 3 
Time 

FIGURE 8. Spike acceleration determined at z = IL on lower surface as a function of time for 
various H .  

Time 

FIGURE 9. Layer thickness determined at x = 0 as a function of time for various H. 

Since the anti-spike begins to form at about t = 3 for H = 0.5, 1.0 and 2.0 (as 
determined by the presence of a negative curvature on the top surface above the 
spike), it  seems possible that enough fluid may drain out of the bubble of a layer whose 
thickness is much less than 1 and that the bubble disrupts before the pressure 
maximum forms. Indeed the rate of decrease of the bubble thickness for H = 0.25 
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( N  = 128 points were used) is apparently faster than exponential when the calculation 
had to be terminated due to lack of resolution of the integrands in the region of the 
bubble. However our calculations may not be sufficiently accurate at late times so 
that the possibility of the bubble disrupting in finite time must remain open. Of 
course, even if the decay is always exponential, the bubble becomes thin enough after 
a reasonable time that for practical purposes the bubble may be considered disrupted. 

In  conclusion, it is clear that the limitation on the amount of fluid in a layer 
seriously affects the Rayleigh-Taylor instability. While the spike always accelerates 
nearly in free fall at large times, the bubble no longer rises with constant velocity 
but also accelerates, apparently without bound. The thickness of the bubble region 
appears to decay exponentially in time for layers that are initially moderately thick. 
However, for initially very thin layers, it  seems that the layer may disrupt after 
finite time even for ideal fluid flow. 

We wish to acknowledge some very useful discussions with Drs R. Menikoff and 
T. Hussey. This work was supported by the Lawrence Livermore National Labora- 
tory, which is supported by the Department of Energy. 

Appendix 
There are several, alternate boundary-integral formulations for free-surface flow, 

but those based on dipole distributions along the surface offer many advantages over 
other representations (Baker et al. 1982). In particular, the integrals are easier to 
evaluate numerically and the integral equations may be solved efficiently by iterative 
techniques. However, for multi-connected domains, a source external to the domain 
must augment the dipole representation. In the two-dimensional, periodic geometry 
that we have assumed for our calculations, the source is placed at infinity and the 
additional complex potential is - i Vz, where V is a vertical velocity related to the 
mean flux across the surfaces. The value of V must be determined by the dynamical 
requirements of the flow. 

The complex potential generated by dipole distributions pk along the surfaces is 
given by 

The periodic contributions along the surface have been summed up into closed form 
(Menikoff & Zemach 1983) and the notational conventions introduced in $2 have been 
adopted here. The potential at the surface, @,(a), is given by the principal value of 
the integrals, which is (2.9). Similarly, the tangential velocity at the surfaces jumps 
in value, but the normal velocity is continuous as required kinematically. Conse- 
quently, there is some arbitrariness in the definition of the motion of surface markers. 
A common choice is the average velocity which is given by @ja/z,a, but there are 
important advantages in using a weighted average (@,a++,p,a)/z,a, where w, is the 
weighting parameter. The particular choices w, = - 1, + 1 mean that the markers 
move with the upper, lower fluid respectively. Note that even if the density is zero 
on one side of the interface, the potential (A 1) still provides a kinematically correct 
flow field in that region. For the calculations reported here, w, is always chosen so 
that the markers move with the fluid in the layer. The motion of the surfaces is 
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therefore described by (2.8) which includes the source contribution. The use of a 
partial time derivative is to emphasize that the motion keeps the marker label a fixed. 

Bernoulli’s equation evaluated at the surface gives 

c, Uf,--G, Vf, +f(uj,+ vj,) + q +gy, = 0, 
”f, 

at 
-- 

where $f, is the velocity potential of the flow in the layer a t  the j t h  surface and uf,, vf, 
are the corresponding fluid velocities. The partial time derivative means that the 
change in $f is calculated along the trajectory of the surface marker labelled a. The 
potential $f, may be expressed in terms of the dipole distribution as 

Gf, = Re ( @,(a) + Pa) - i Vzj(a). 
4 

Similarly, the complex fluid velocity is 

After substituting (A 3) and (A 4) into (A 2) and performing some simple algebra, one 
obtains 

Finally, the time rate of change of the average potential may be expressed as 

!!%@ = J: Re {K&, a’)} da’ + J: ,uk(a’) Re {I$&, a’)} da’, 
at k-1 k-1 

(A 6) 

and when (A 6) is substituted in (A 5), (2.1 1 )  follows after some rearrangement of the 
terms. 

Equation (2.11) has a non-trivial, homogeneous solution and so according to the 
Fredholm alternate, no solution to the inhomogeneous equation is possible unless 
(2.14) is satisfied. Consequently, for given q and fluid velocity, which means p, is 
known, dV/dt is needed in Bernoulli’s equation to counteract the effect of the 
nonlinear term which contributes a mean pressure different at  each surface and which 
effects the balance between q, the hydrostatic pressure gy, and the mean acceleration 
of the layer. 

With (2.14) satisfied, the solution to (2.11) is determined up to a constant 
contribution to a,u,/at. This latter term gives a constant contribution to a$/at that 
is dynamically irrelevant and therefore chosen arbitrarily. The details of this and the 
numerical procedure used to solve (2.11) are available elsewhere (Baker 1983). 
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